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Self-organized percolation
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We investigate a growth mechanism for percolation clusters where self-organization leads the system to
criticality. By controlling the number of sites or bonds in the growth front of the aggregate, the system is
spontaneously driven to a stationary state that corresponds to the percolation threshold of the lattice topology
and percolation process used in the simulation~site or bond percolation!. This self-tuning behavior around a
critical state is then discussed with reference to the concept of self-organized criticality. We also suggest that
the generalization of this approach to other controlling rules and lattice geometries could explain the occur-
rence of percolation structures in some physical and nonphysical disordered systems.
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Percolation is a successful model for many phenomen
nature@1#. In its original version, percolation is astaticgeo-
metric model in the sense that we have to simultaneou
populate all sites or bonds of a lattice with a prescribed pr
ability p. For small values ofp, only finite clusters will be
present. By increasingp, one can find the threshold or crit
cal valuepc for which an infinitely connected object is gen
erated.

Extensions of the percolation model have been develo
to describe dynamical phenomena. In the model of Leath@2#,
all sites are visited and populated with afixedprobability p
during the growth process. Obviously, this requires a t
and error scheme to determine the critical probability,pc .
The advantage is that, sincep5pc even at the local level
critical clusters generated with this algorithm have morp
logical characteristics that are identical to standard perc
tion ones.

In the invasion percolation model@3#, a random number
uniformly distributed in @0,1# is assigned to each site o
bond, and the cluster growth from an active element ta
place through the occupation of the neighbor position t
has the smallest probability value. In spite of the fact that
local probability distributionof the occupied element in in
vasion percolation is very broad, the clusters generated f
the invasion and standard~static! percolation models have
approximately the same fractal dimension,df'1.89.

The concept of self-organized criticality~SOC! has been
introduced by Bak, Tang, and Wiensenfeld@4# as a possible
explanation for the tendency of large and complex system
drive themselves to critical states. Accordingly, genu
SOC systems would be expected to display power law c
relations in time and space. Additionally, the critical sta
would have to be achieved without the need of imposin
fine tuning mechanism to a given parameter. In summary,
two essential features for the existence of a SOC state
self-organizationand self-similarity. However, the occur-
rence of both properties in the same system to exhibit S
behavior still represents a very controversial issue. Mo
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over, it has been questioned if a mean-field description fo
SOC system could provide some insight that could explain
somehow justify the phenomenon of spontaneous organ
tion towards a critical state. Zapperi, Lauritsen, and Stan
@5# solved this problem introducing a new mean-field mod
the self-organizing branching process~SOBP!. Their model
is based on a sandpile paradigm in which open bound
conditions are explicitly incorporated to allow for dissip
tion. Local dynamical rules are conveniently coupled to
global controlling mechanism and, as a result, the sys
organizes itself into a stationary state described by a crit
branching process.

In the present communication, we find that simple co
trolling rules can lead to aself-organized percolation~SOP!
process. Moreover, this state is reached and sustained
to the percolation threshold without fine tuning any para
eter in the system. In our model, we start with several oc
pied sites at one side of aL3L square lattice. At the initial
time (t50), the available nearest-neighbors of these se
are identified and considered occupied if the uniform rand
numbers 0<r<1 assigned to them are less than a giv
probability p. The sites occupied at timet in the lattice are
called the active sites of the growing process. However
contrast with the method developed by Leath@2#, where the
probabilityp is fixed during the growth of thespanning clus-
ter, here we allow it to vary in order to compensate for t
increase or decrease in the number of active sites,N(t), in
the growth front. The basic idea is to ensure that the clu
will never stop growing and also that the number of act
sites will never increase exponentially in time. For simpl
ity, we adopted the following first order controlling mech
nism

p~ t11!5p~ t !1k@NT2N~ t !# , ~1!

wherek is a kinetic coefficient andNT is a threshold param
eter. The probability is obviously limited to the range 0<p
<1, so that we have to imposep(t11)50 andp(t11)
51 if the recurrence relationship Eq.~1! gives nonphysical
values forp(t11) less than 0 and greater than 1, resp
tively. As in the traditional algorithm for growth of percolar
R2379 © 1997 The American Physical Society
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tion clusters@1#, if a selected perimeter site is not occupied
a given time step, it will remain unnocupied forever. Op
boundary conditions have been adopted at the sides o
lattice that are orthogonal to the boundary line where
seeds have been placed. The generalization of the whol
gorithm for bond percolation growth is straightforward.

A typical realization of a cluster grown with our model
shown in Fig. 1. As depicted, the cluster density follows t
variation in the parameterp, initially growing as a compac
object at the lower part of the lattice and changing gradu
to a ramified structure which resembles more closely a p
colation geometry. The time evolution of the growth prob
bilty p is shown in Fig. 2~a! for three different values ofp0.
After a transient period and independently ofp0, the systems
reaches a stationary state characterized by an average
of the growth probabilitŷ p&'0.59, which closely recover
the percolation thresholdpc obtained with standard simula
tions of site percolation clusters@1#. In Fig. 2~b!, the results
of simulations performed for the bond percolation case a
indicate that, after a transient interval and independently
p0, the growth probabilityp becomes stationary and star
executing small amplitude oscillations around an aver
value ^p&'0.5. This result is consistent with the critic
point reported in literature for bond percolation@1#. To con-
firm the hypothesis of self-organization in a critical sta
extensive simulations have been carried out with distinct
netic coefficientsk, threshold valuesNT as well as applying
different controlling rules to systematically change the va
able p. In all cases, we observed the same self-organi
behavior with the system being automatically tuned to
corresponding site or bond percolation threshold.

The restoring mechanism given by Eq.~1! regulates the
probability p in such a way that the continuity of the grow
process is kept at a minimum rate. As expected, the resul
our simulations indicate that the threshold valueNT simply

FIG. 1. Typical realization of a cluster grown under the bo
percolation scheme and driven by the controlling rule Eq.~1!. In
this particular simulation, 100 seeds have been randomly alloc
in the bottom line of a 100031000 square lattice. The initial growt
probability is p051, the kinetic coefficient isk51025 and the
threshold for the number of active elements isNT5200.
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sets up the average value around which the number of ac
sitesN fluctuates in time after the system achieves station
ity ~see Fig. 3!. Evidently,NT cannot be too small, otherwis
fluctuations in the process could eventually kill the rema
ing active tips in the growth front. On the other hand, lar
values of NT would require an excessively long transie
period ~and so large lattice sizes! for the SOP system to
reach the stationary regime.

The simulation results displayed in Fig. 3 clearly indica
that the parameterk has a strong influence on the oscillato
behavior of the functionN(t). Although the time series
shown in Fig. 3 do not follow a periodic pattern, the hig
frequency fluctuations inN(t) appear to be associated wit
large values ofk. This effect can be justified through th
following mean-field representation of the system:

N~ t11!53p~ t !@12s~ t !#N~ t ! , ~2!

where the deactivation probabilitys(t), 0<s(t)<1, ac-
counts for exclusion effects during the SOP growth proce

ed

FIG. 2. ~a! Plot of the probability of occupation in the growt
front p as a function of time for the site percolation case in
200032000 square lattice. The controlling rule used is Eq.~1! (k
51024 andNT5200). After a short transient and independently
the initial conditions p0, p(t) achieves a stationary state,^p&
'0.59, and fluctuates around it with short range correlations.~b!
The same as in~a!, but now for the bond percolation case. Agai
independently ofp0 and after a short transient interval,p(t) ex-
ecutes small amplitude oscillations around a critical state,^p&
'0.5.
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These self-avoiding mechanisms are induced by spatial
relations in the lattice and tend to reduce the current num
of active sites in the system. Equations~1! and~2! constitute
the basis of the SOP dynamics. Taking the continuum lim
of them and assuming that the probabilitys is approximately
constant for a given lattice topology, after some manipu
tions, the following differential equation inN(t) is obtained:

d2N

dt2
5

1

NS dN

dt D
2

13k~12s!NTN23k~12s!N2 . ~3!

The last term on the right-hand side of Eq.~3! indicates
that the occurrence of high frequency oscillations inN(t)
should be directly, but in a nonlinear fashion, associated w
large values of the coefficientk. This behavior is in agree
ment with the results shown in Fig. 3.

It is interesting to investigate different forms of the co
trolling mechanism acting on percolation growth. For e
ample, we can stipulate that the thresholdNT increases with
time according to a power law type of function,NT(t)
5ata. Instead of Eq.~1!, the following recurrence relation
ship should then be utilized in the SOP model:

p~ t11!5p~ t !1k@ata2N~ t !# , ~4!

wherea.0 anda.0 are arbitrary constants. Actually, th
feedback rule could simulate the situation of growth cont
being exerted by an underlying coexisting process wh
dynamics is expressed here asNT(t). Remarkably, our re-
sults indicate that, within a certain range ofa values, 0<a
,1, clusters grown under the controlling mechanism Eq.~4!
are still self-organized around critical states correspondin
the specific percolation thresholds of lattice topologies a
aggregation rules. In this case, while the functionN(t)
closely follows the time evolution of the variable thresho
NT(t) @see Fig. 4~a!#, the probabilityp(t) rapidly achieves a
stationary state around a fixed point^p&'0.59 @see Fig.
4~b!#, which is equal to the threshold value for site perco
tion in a square lattice@1#.

The SOP process can also be compared to other met
to determine critical coordinates of phase transitions. In

FIG. 3. Dependence on time of the number of active sitesN(t)
calculated at distinct threshold positionsNT for different values of
the parameterk: ~a! NT5300 andk51023; ~b! NT5200 andk
51024; ~c! NT5100 andk51025.
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gradient method@6#, a gradient is imposed to the order p
rameter against which the cluster has to grow. At each t
step, as the cluster frontier~as a whole! advances in a given
direction, the value ofp is reduced of a constant amoun
obeying a linear relationship. This corresponds to a grad
of p in time and also in space. Whenp reachespc , the
object starts to loose its global connectivity. Thus, the av
age boundary of the connected cluster marks the value ofpc .
The drawback of the method is that the gradient is fixed a
only the external surface of the percolation cluster is at cr
cality. Its accuracy depends on the possibility of repeat
the experiment and confining the set ofpc estimates to
smaller and smaller intervals. Compared to the gradi
method, our model is analogous to have, at each time ste
variable gradient ofp that does not work against growth a
the time, but always drives the system back to criticali
This gradient is not fixed, but depends on the deviation fr
the critical point. So if the system is far frompc , the gradi-
ent is big, whereas ifp is close topc , the gradient is small.
Under these rules, the system will approach the critical s
in a fast way and will remain close topc , providing an easy
and precise technique to determine this value in a single

FIG. 4. ~a! Dependence on time of the number of active si
N(t) for a site percolation cluster growing under the controlli
rule Eq.~4! (k51024 andp050.8). The thick line corresponds t
NT(t)510t1/2. ~b! The same as in~a!, but now for the probabilityp
of occupation in the growth front. For this particular simulation, t
growth process started from 100 seeds which have been rand
allocated in the bottom line of a 200032000 square lattice.
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Before concluding, we point out that the intrinsic dynam
ics involved in the SOP process is also present in ot
growth systems where some forms of self-organization
criticality are simultaneously observed. Genuine SOC sta
have also been detected in the branched polymer gro
model~BPGM! @7,8#. In a recent study@9#, numerical simu-
lations have been performed with the BPGM to demonst
how a simple and feasible feedback mechanism like Eq.~1!
could systematically drive the aggregation process to the
cinity of the transition line between finite and infinite r
gimes of growth.

Summarizing, in this paper we proposed a growth mec
nism for percolation clusters, the SOP process, in which s
organization and criticality are ingredients of the same
namics. We demonstrated that a SOC state can be prom
and spontaneously achieved by coupling the Leath algori
@2# to global controlling rules that simply regulate the grow
id
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rate of a percolation aggregate. Under this framework,
also pointed out that the mechanism introduced here sh
be flexible to simulate the growth of other physical and no
physical processes. For instance, in the context of biolog
systems, recent studies@10,11# have demonstrated that whil
blood capillary networks present in normal tissues are fu
connected or compact~Euclidian! structures, the process o
vascular network formation~angiogeneses! in cancer tumors
display percolationlike scaling. If tumor angiogeneses is li
ited by cancer growth, it should be possible to understand
morphological characteristics of tumor vascular networks
the framework of an SOP process.
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