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Self-organized percolation
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We investigate a growth mechanism for percolation clusters where self-organization leads the system to
criticality. By controlling the number of sites or bonds in the growth front of the aggregate, the system is
spontaneously driven to a stationary state that corresponds to the percolation threshold of the lattice topology
and percolation process used in the simulafigite or bond percolation This self-tuning behavior around a
critical state is then discussed with reference to the concept of self-organized criticality. We also suggest that
the generalization of this approach to other controlling rules and lattice geometries could explain the occur-
rence of percolation structures in some physical and nonphysical disordered systems.
[S1063-651%97)50209-1

PACS numbegps): 61.41+e, 05.40+]

Percolation is a successful model for many phenomena iover, it has been questioned if a mean-field description for a
nature[1]. In its original version, percolation isstaticgeo-  SOC system could provide some insight that could explain or
metric model in the sense that we have to simultaneouslgomehow justify the phenomenon of spontaneous organiza-
populate all sites or bonds of a lattice with a prescribed probtion towards a critical state. Zapperi, Lauritsen, and Stanley
ability p. For small values op, only finite clusters will be [5] solved this problem introducing a new mean-field model,
present. By increasing, one can find the threshold or criti- the self-organizing branching proce&0BB. Their model
cal valuep, for which an infinitely connected object is gen- is based on a sandpile paradigm in which open boundary
erated. conditions are explicitly incorporated to allow for dissipa-

Extensions of the percolation model have been developetion. Local dynamical rules are conveniently coupled to a
to describe dynamical phenomena. In the model of LE2ith  global controlling mechanism and, as a result, the system
all sites are visited and populated witHiged probabilityp ~ organizes itself into a stationary state described by a critical
during the growth process. Obviously, this requires a trialoranching process.
and error scheme to determine the critical probability, In the present communication, we find that simple con-
The advantage is that, singe=p, even at the local level, trolling rules can lead to aelf-organized percolatiofSOP
critical clusters generated with this algorithm have morpho{rocess. Moreover, this state is reached and sustained close
logical characteristics that are identical to standard percoldo the percolation threshold without fine tuning any param-
tion ones. eter in the system. In our model, we start with several occu-

In the invasion percolation moddB], a random number pied sites at one side oflax L square lattice. At the initial
uniformly distributed in[0,1] is assigned to each site or time (t=0), the available nearest-neighbors of these seeds
bond, and the cluster growth from an active element takegre identified and considered occupied if the uniform random
place through the occupation of the neighbor position thabumbers Gsr<1 assigned to them are less than a given
has the smallest probability value. In spite of the fact that theprobability p. The sites occupied at tintein the lattice are
local probability distributionof the occupied element in in- called the active sites of the growing process. However, in
vasion percolation is very broad, the clusters generated frorontrast with the method developed by Lep2h where the
the invasion and standar@tatio percolation models have probabilityp is fixed during the growth of thepanning clus-
approximately the same fractal dimensiaip= 1.89. ter, here we allow it to vary in order to compensate for the

The concept of self-organized criticalitsOC has been increase or decrease in the number of active siigs), in
introduced by Bak, Tang, and Wiensenf¢ as a possible the growth front. The basic idea is to ensure that the cluster
explanation for the tendency of large and complex systems twill never stop growing and also that the number of active
drive themselves to critical states. Accordingly, genuinesites will never increase exponentially in time. For simplic-
SOC systems would be expected to display power law cority, we adopted the following first order controlling mecha-
relations in time and space. Additionally, the critical statenism
would have to be achieved without the need of imposing a
fine tuning mechanism to a given parameter. In summary, the p(t+1)=p(t)+Kk[N;:—=N(t)], D)
two essential features for the existence of a SOC state are
self-organizationand self-similarity However, the occur- wherek is a kinetic coefficient andll is a threshold param-
rence of both properties in the same system to exhibit SO@ter. The probability is obviously limited to the rangep
behavior still represents a very controversial issue. More=1, so that we have to impogg€t+1)=0 andp(t+1)

=1 if the recurrence relationship E€L) gives nonphysical
values forp(t+1) less than O and greater than 1, respec-
*Corresponding author. Electronic address: soares@fisica.ufc.bitively. As in the traditional algorithm for growth of percola-
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FIG. 1. Typical realization of a cluster grown under the bond
percolation scheme and driven by the controlling rule &g. In 07
this particular simulation, 100 seeds have been randomly allocated P os
in the bottom line of a 10001000 square lattice. The initial growth ’ d
probability is po=1, the kinetic coefficient ik= 107° and the 05 U
threshold for the number of active elementdNis= 200.

tion clusterq 1], if a selected perimeter site is not occupied at
a given time step, it will remain unnocupied forever. Open 03T
boundary conditions have been adopted at the sides of the

0.2 s ) s

lattice that are orthogonal to the boundary line where the ) ° 200 w0 e 5 800 1000
seeds have been placed. The generalization of the whole al-
gorithm for bond percolation growth is straightforward. FIG. 2. (a) Plot of the probability of occupation in the growth

A typical realization of a cluster grown with our model is front p as a function of time for the site percolation case in a
shown in Fig. 1. As depicted, the cluster density follows the2000<2000 square lattice. The controlling rule used is B.(k
variation in the parametep, initially growing as a compact =10"* andN;=200). After a short transient and independently of
object at the lower part of the lattice and changing graduallythe initial conditionsp,, p(t) achieves a stationary statép)
to a ramified structure which resembles more closely a per=0.59, and fluctuates around it with short range correlati¢ins.
colation geometry. The time evolution of the growth proba-The same as iffa), but now for the bond percolation case. Again,
bilty p is shown in Fig. 2a) for three different values gf,. ~ independently ofp, and after a short transient intervai(t) ex-
After a transient period and independentlypgf the systems ecutes small amplitude oscillations around a critical stépm,
reaches a stationary state characterized by an average valtié@->-

of the growth probabilit p)~0.59, which closely recovers sets up the average value around which the number of active
the percolation threshold. obtained with standard simula- . P ge . .
sitesN fluctuates in time after the system achieves stationar-

tions of site percolation clustef4]. In Fig. 2b), the results . ) . )
of simulations performed for the bond percolation case als?ty (see Fig. % Evidently,Ny cannot be too small, otherwise

indicate that, after a transient interval and independently oILUCt;SRf)en‘:’i '2 ?gih%roigaihc?rlélgt e(\gin:ﬁ:”())/tr:qe”r tr:‘aen:jerra?me'
po, the growth probabilityp becomes stationary and starts 9 P 9 ' , 1arg

executing small amplitude oscillations around an averagé(alrlijej‘ (OLBIT WOIUIrd relqtliilre a?z}ae;iefs'viégmg ttrarr:]s[[ent
value (p)=~0.5. This result is consistent with the critical period tand so 1arge fatlice sizgsor the system to

: o . reach the stationary regime.
point reported in literature for bond percolatiph]. To con- ) ) ; A .
firm the hypothesis of self-organization in a critical state, The simulation results displayed in Fig. 3 clearly indicate

extensive simulations have been carried out with distinct ki-that the parameter has a strong influence on the oscillatory

netic coefficientsk, threshold valuedl; as well as applying behavior of the functionN(t). Although the time series

. . : . shown in Fig. 3 do not follow a periodic pattern, the high
ff I I lly ch h - ) ) . .
different controlling rules to systematically change the Vanefequency fluctuations iN(t) appear to be associated with

able p. In all cases, we observed the same self-organize . .
behavior with the system being automatically tuned to th arge _values Oﬂ('. This effect can be justified through the
ollowing mean-field representation of the system:

corresponding site or bond percolation threshold.
The restoring mechanism given by Ed) regulates the N(t+1)=3p(t)[1—s()IN(L), )

probability p in such a way that the continuity of the growth

process is kept at a minimum rate. As expected, the results afhere the deactivation probabilitg(t), 0<s(t)<1, ac-

our simulations indicate that the threshold vahNe simply  counts for exclusion effects during the SOP growth process.
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FIG. 3. Dependence on time of the number of active €9 0.0

calculated at distinct threshold positioNg for different values of
the parametek: (@ N;+=300 andk=10"3; (b) Ny=200 andk
=104 (c) Ny=100 andk=10"5. osor
These self-avoiding mechanisms are induced by spatial cor- .1
relations in the lattice and tend to reduce the current number

of active sites in the system. Equatiofi$ and(2) constitute

the basis of the SOP dynamics. Taking the continuum limits o0
of them and assuming that the probabiktys approximately
constant for a given lattice topology, after some manipula-
tions, the following differential equation iN(t) is obtained:

dZ_N— l d_N 2+ 3k 1_ N N_3k 1_ N2 3 0'400 5(‘)0 10‘00 15‘00 2000
G2 N\ dt (1-s)Ny (1-s)N“. (3 (b) sime
The last term on the right-hand side of E®) indicates FIG. 4. (a) Dependence on time of the number of active sites

that the occurrence of high frequency oscillationsN(t) N(t) for a site percolation cluster growing under the controlling
should be directly, but in a nonlinear fashion, associated withule Eq.(4) (k=10"* andp,=0.8). The thick line corresponds to

large values of the coefficiett This behavior is in agree- Nr(t)=10t"2 (b) The same as ife), but now for the probability
ment with the results shown in Fig. 3. of occupation in the growth front. For this particular simulation, the

It is interesting to investigate different forms of the con- growth process started from 100 seeds which have been randomly
trolling mechanism acting on percolation growth. For ex-allocated in the bottom line of a 2082000 square lattice.
ample, we can stipulate that the threshhlid increases with
time according to a power law type of functidd+(t)
=at®. Instead of Eq(1), the following recurrence relation-

gradient method6], a gradient is imposed to the order pa-
rameter against which the cluster has to grow. At each time

ship should then be utilized in the SOP model: step, as the cluster frontiéas a whol¢ advances in a given
direction, the value op is reduced of a constant amount,
p(t+1)=p(t)+k[at*—N(t)], (4) obeying a linear relationship. This corresponds to a gradient

of p in time and also in space. Wham reachesp,, the

wherea>0 anda>0 are arbitrary constants. Actually, this object starts to loose its global connectivity. Thus, the aver-
feedback rule could simulate the situation of growth controlage boundary of the connected cluster marks the valpe of
being exerted by an underlying coexisting process whosé&he drawback of the method is that the gradient is fixed and
dynamics is expressed here Mg(t). Remarkably, our re- only the external surface of the percolation cluster is at criti-
sults indicate that, within a certain range @fvalues, G< « cality. Its accuracy depends on the possibility of repeating
<1, clusters grown under the controlling mechanism @y. the experiment and confining the set pf estimates to
are still self-organized around critical states corresponding tesmaller and smaller intervals. Compared to the gradient
the specific percolation thresholds of lattice topologies andnethod, our model is analogous to have, at each time step, a
aggregation rules. In this case, while the functibift) variable gradient op that does not work against growth all
closely follows the time evolution of the variable threshold the time, but always drives the system back to criticality.
N+(t) [see Fig. 4a)], the probabilityp(t) rapidly achieves a This gradient is not fixed, but depends on the deviation from
stationary state around a fixed poifp)~0.59 [see Fig. the critical point. So if the system is far fropy, the gradi-
4(b)], which is equal to the threshold value for site percola-ent is big, whereas ip is close top, the gradient is small.
tion in a square latticgl]. Under these rules, the system will approach the critical state

The SOP process can also be compared to other methodsa fast way and will remain close ., providing an easy
to determine critical coordinates of phase transitions. In thend precise technique to determine this value in a single run.
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Before concluding, we point out that the intrinsic dynam-rate of a percolation aggregate. Under this framework, we
ics involved in the SOP process is also present in othealso pointed out that the mechanism introduced here should
growth systems where some forms of self-organization ande flexible to simulate the growth of other physical and non-
criticality are simultaneously observed. Genuine SOC stateghysical processes. For instance, in the context of biological
have also been detected in the branched polymer growtgystems, recent studi€$0,11] have demonstrated that while
model (BPGM) [7,8]. In a recent study9], numerical simu-  blood capillary networks present in normal tissues are fully
lations have been performed with the BPGM to demonstrateonnected or compac¢Euclidian structures, the process of
how a simple and feasible feedback mechanism like(Eq. vascular network formatiofangiogenesesn cancer tumors
could systematically drive the aggregation process to the vidisplay percolationlike scaling. If tumor angiogeneses is lim-
cinity of the transition line between finite and infinite re- ited by cancer growth, it should be possible to understand the
gimes of growth. morphological characteristics of tumor vascular networks in

Summarizing, in this paper we proposed a growth mechathe framework of an SOP process.
nism for percolation clusters, the SOP process, in which self-
organization and criticality are ingredients of the same dy-
namics. We demonstrated that a SOC state can be promptly We thank L. R. da Silva and J. E. Freitas for useful dis-
and spontaneously achieved by coupling the Leath algorithmussions. We also thank CNPg, CAPES, and FINBR:zil-

[2] to global controlling rules that simply regulate the growth ian agenciesfor financial support.
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